说说桥接模式
桥接模式的定义与特点
桥接(Bridge)模式的定义如下:将抽象与实现分离,使它们可以独立变化。它是用组合关系代替继承关系来实现,从而降低了抽象和实现这两个可变维度的耦合度。
通过上面的讲解,我们能很好的感觉到桥接模式遵循了里氏替换原则和依赖倒置原则,最终实现了开闭原则,对修改关闭,对扩展开放。这里将桥接模式的优缺点总结如下。
桥接(Bridge)模式的优点是:
- 抽象与实现分离,扩展能力强
- 符合开闭原则
- 符合合成复用原则
- 其实现细节对客户透明
缺点是:由于聚合关系建立在抽象层,要求开发者针对抽象化进行设计与编程,能正确地识别出系统中两个独立变化的维度,这增加了系统的理解与设计难度。
桥接模式的结构与实现
可以将抽象化部分与实现化部分分开,取消二者的继承关系,改用组合关系。
1. 模式的结构
桥接(Bridge)模式包含以下主要角色。
- 抽象化(Abstraction)角色:定义抽象类,并包含一个对实现化对象的引用。
- 扩展抽象化(Refined Abstraction)角色:是抽象化角色的子类,实现父类中的业务方法,并通过组合关系调用实现化角色中的业务方法。
- 实现化(Implementor)角色:定义实现化角色的接口,供扩展抽象化角色调用。
- 具体实现化(Concrete Implementor)角色:给出实现化角色接口的具体实现。
举个栗子 来自廖雪峰大神
假设某个汽车厂商生产三种品牌的汽车:Big、Tiny和Boss,每种品牌又可以选择燃油、纯电和混合动力。如果用传统的继承来表示各个最终车型,一共有3个抽象类加9个最终子类:
┌───────┐
│ Car │
└───────┘
▲
┌──────────────────┼───────────────────┐
│ │ │
┌───────┐ ┌───────┐ ┌───────┐
│BigCar │ │TinyCar│ │BossCar│
└───────┘ └───────┘ └───────┘
▲ ▲ ▲
│ │ │
│ ┌───────────────┐│ ┌───────────────┐│ ┌───────────────┐
├─│ BigFuelCar │├─│ TinyFuelCar │├─│ BossFuelCar │
│ └───────────────┘│ └───────────────┘│ └───────────────┘
│ ┌───────────────┐│ ┌───────────────┐│ ┌───────────────┐
├─│BigElectricCar │├─│TinyElectricCar│├─│BossElectricCar│
│ └───────────────┘│ └───────────────┘│ └───────────────┘
│ ┌───────────────┐│ ┌───────────────┐│ ┌───────────────┐
└─│ BigHybridCar │└─│ TinyHybridCar │└─│ BossHybridCar │
└───────────────┘ └───────────────┘ └───────────────┘
如果要新增一个品牌,或者加一个新的引擎(比如核动力),那么子类的数量增长更快。
所以,桥接模式就是为了避免直接继承带来的子类爆炸。
我们来看看桥接模式如何解决上述问题。
在桥接模式中,首先把Car
按品牌进行子类化,但是,每个品牌选择什么发动机,不再使用子类扩充,而是通过一个抽象的“修正”类,以组合的形式引入。我们来看看具体的实现。
首先定义抽象类Car
,它引用一个Engine
:
public abstract class Car {
// 引用Engine:
protected Engine engine;
public Car(Engine engine) {
this.engine = engine;
}
public abstract void drive();
}
Engine
的定义如下:
public interface Engine {
void start();
}
紧接着,在一个“修正”的抽象类RefinedCar
中定义一些额外操作:
public abstract class RefinedCar extends Car {
public RefinedCar(Engine engine) {
super(engine);
}
public void drive() {
this.engine.start();
System.out.println("Drive " + getBrand() + " car...");
}
public abstract String getBrand();
}
这样一来,最终的不同品牌继承自RefinedCar
,例如BossCar
:
public class BossCar extends RefinedCar {
public BossCar(Engine engine) {
super(engine);
}
public String getBrand() {
return "Boss";
}
}
而针对每一种引擎,继承自Engine
,例如HybridEngine
:
public class HybridEngine implements Engine {
public void start() {
System.out.println("Start Hybrid Engine...");
}
}
客户端通过自己选择一个品牌,再配合一种引擎,得到最终的Car:
RefinedCar car = new BossCar(new HybridEngine());
car.drive();
使用桥接模式的好处在于,如果要增加一种引擎,只需要针对Engine
派生一个新的子类,如果要增加一个品牌,只需要针对RefinedCar
派生一个子类,任何RefinedCar
的子类都可以和任何一种Engine
自由组合,即一辆汽车的两个维度:品牌和引擎都可以独立地变化。
┌───────────┐
│ Car │
└───────────┘
▲
│
┌───────────┐ ┌─────────┐
│RefinedCar │ ─ ─ ─>│ Engine │
└───────────┘ └─────────┘
▲ ▲
┌────────┼────────┐ │ ┌──────────────┐
│ │ │ ├─│ FuelEngine │
┌───────┐┌───────┐┌───────┐ │ └──────────────┘
│BigCar ││TinyCar││BossCar│ │ ┌──────────────┐
└───────┘└───────┘└───────┘ ├─│ElectricEngine│
│ └──────────────┘
│ ┌──────────────┐
└─│ HybridEngine │
└──────────────┘
桥接模式实现比较复杂,实际应用也非常少,但它提供的设计思想值得借鉴,即不要过度使用继承,而是优先拆分某些部件,使用组合的方式来扩展功能。